Delirium, Apo-E status, and AD CSF biomarkers

Zhongcong Xie, M.D., Ph.D. Geriatric Anesthesia Research Unit Department of Anesthesia, Critical Care and Pain Medicine Massachusetts General Hospital Harvard Medical School February 10, 2014

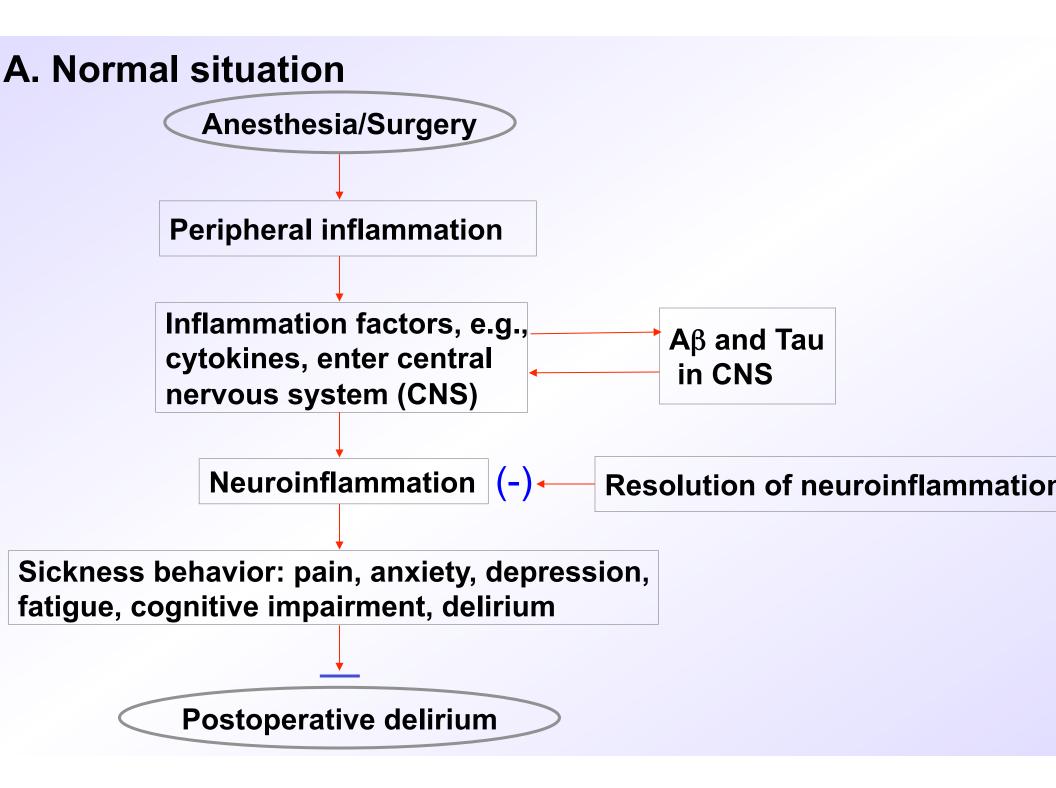
Disclosures

 \succ Current funding: NIH R01GM088801 NIH R01 AG041274 NIH R21AG038994 Investigator-Initiated Research Grant from Alzheimer's Association Other financial relationships: None > Conflicts of interest:

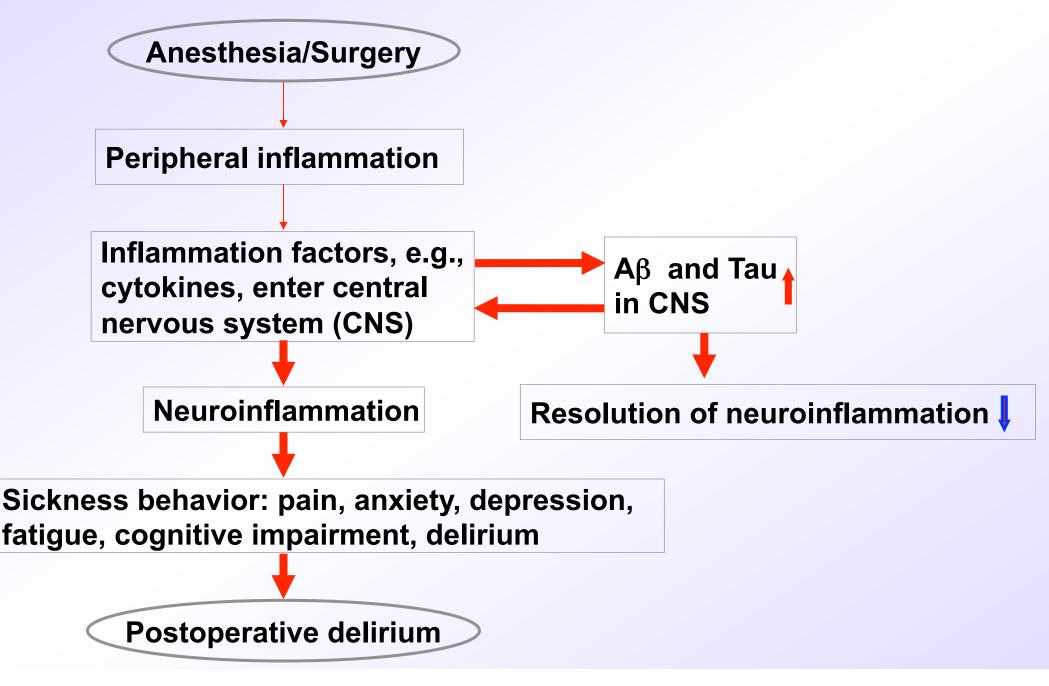
No

Postoperative Complications in Geriatric Patients

Complication	Incidence
Pulmonary Embolism	0.5%
ARDS	0.8%
Stroke	1%
Myocardial infarction	2%
Pneumonia	4%
Death	5%
Heart Failure	6%
Delirium	15%
POCD	10 - 15%


Liu LL, et al., JAGS 48:405, 2000 Moller JT, et al. Lancet 351: 857, 1998 Monk TG, et al., Anesthesiology 108: 18, 2008

Postoperative delirium


- Postoperative delirium has been suggested to relate to neuroinflammation (Wilson et al., 2002; Ramlawi et al., 2006 Rudolph et al., 2008).
- Specifically, patients may develop "Sickness behavior", including fever, depression, cognitive dysfunction and delirium, after the surgery.

Everybody has postoperative inflammation associated with surgery.

Why does not everybody develop postoperative delirium ?

B. Elevated A β and Tau levels in brain

β-Amyloid peptide (Aβ)

- Aβ is the main component of senior plaques found in AD patient brain.
- Aβ40 is a 40 amino acid peptide, and Aβ42 is a 42 amino acid peptide.

> Aβ is produced from its large precursor protein (amyloid precursor protein) by sequential proteolytic cleavage through two proteases, βsecretase and γ-secretase.

(Mucke and Selkoe, 2012)

Tau

- > Tau is a microtubule-associated protein.
- Hyperphosphrylated Tau is the main component of neurofibrillary tangle, a neuropathological hallmarks of AD.

Hyperphosphorylated Tau is involved in the neurodegeneration of AD and dementia.

(Mandelkow and Mandelkow, 2012)

Cerebrospinal fluid (CSF) Aß and Tau

- CSF Aβ42 in AD is decreased to approximately 50% of control levels.
- CSF total Tau in AD is increased to around 300% of control levels.
- High CSF Tau/Aβ42 ratio predict mild cognitive impairment and/or dementia.
- > High CSF Tau/Aβ42 ratio predict cognitive decline in nondemented elders.

(Blennow, Zettererg and Fagan, 2012)

CSF Aβ, Tau and Postoperative Cognitive Change

CSF Aβ42/Tau ratio

TABLE 3. Correlation Between Cognitive Function and the CSF Ap42/Tau Ratio

		Unadjusted	Adjusted by Age and Sex				
	Estimate (Z Score)	Standard Error (Z Score)	P	Estimate (Z Score)	Standard Error (Z Score)	P	
HVLTRet 1 wk	7.063	2.732	0.011	8.351	2.734	0.003	
HVLTRet 3-6 mo	2.531	2.824	0.372	3.680	2.828	0.196	
HVLTTR 1 wk	0.474	0.398	0.236	0.412	0.408	0.314	
HVLTTR 3-6 mo	0.740	0.406	0.071	0.833	0.412	0.046	
BVMTTR 1 wk	0.315	0.565	0.579	0.174	0.562	0.758	
BVMTTR 3-6 mo	0.152	0.508	0.766	-0.022	0.515	0.966	
BVMTDR 1 wk	0.067	0.236	0.778	0.001	0.240	0.995	
BVMTDR 3-6 mo	-0.082	0.202	0.687	-0.099	0.208	0.635	
JLO 1 wk	0.915	0.401	0.024	0.954	0.408	0.021	
JLO 3-6 mo	1.139	0.436	0.011	1.242	0.446	0.003	
Trails B 1 wk	- 5.623	2.366	0.019	- 4.724	2.396	0.051	
Trails B 3-6 mo	1.442	2.221	0.518	1.158	2.285	0.614	

The left panel of the table illustrates the results of the Pearson correlation analysis between CSF A/342/tau ratio and cognitive function in humans. The right panel of the table shows the results of the linear regression analysis after adjustment with age and sex.

(Xie et al., Annals of Surgery, 2013)

CSF Aβ40/Tau ratio

		Unadjusted	Adjusted by Age and Sex				
	Estimate (Z Score)	Standard Error (Z Score)	P	Estimate (Z Score)	Standard Error (Z Score)	P	
HVLTRet 1 wk 1.900		2.797	0.498	2.367	2.791	0.398	
HVLTRet 3-6 mo	- 0.950	2.918	0.745	-0.742	2.893	0.79	
HVLTTR 1 wk	0.259	0.400	0.519	0.267	0.404	0.50	
HVLTTR 3-6 mo	0.494	0.422	0.244	0.428	0.424	0.31	
BVMTTR 1 wk	-0.585	0.573	0.309	-0.399	0.566	0.48;	
BVMTTR 3-6 mo	0.958	0.515	0.066	1.045	0.512	0.04	
BVMTDR 1 wk	-0.227	0.239	0.345	-0.230	0.241	0.34	
BVMTDR 3-6 mo	0.413	0.204	0.045	0.418	0.207	0.04	
JLO 1 wk	-0.067	0.409	0.869	-0.146	0.411	0.72	
JLO 3-6 mo	-0.289	0.465	0.536	-0.317	0.472	0.50	
Trails B 1 wk	1.855	2.409	0.443	1.882	2.391	0.43	
Trails B 3-6 mo	- 1.712	2.291	0.457	-1.688	2.324	0.46	

The left panel of the table illustrates the results of the Pearson correlation analysis between CSF A\$40/tau ratio and cognitive function in humans. The right panel of the table shows the results of the linear regression analysis after adjustment with age and sex.

(Xie et al., Annals of Surgery, 2013)

CSF Aβ, Tau and Postoperative Delirium

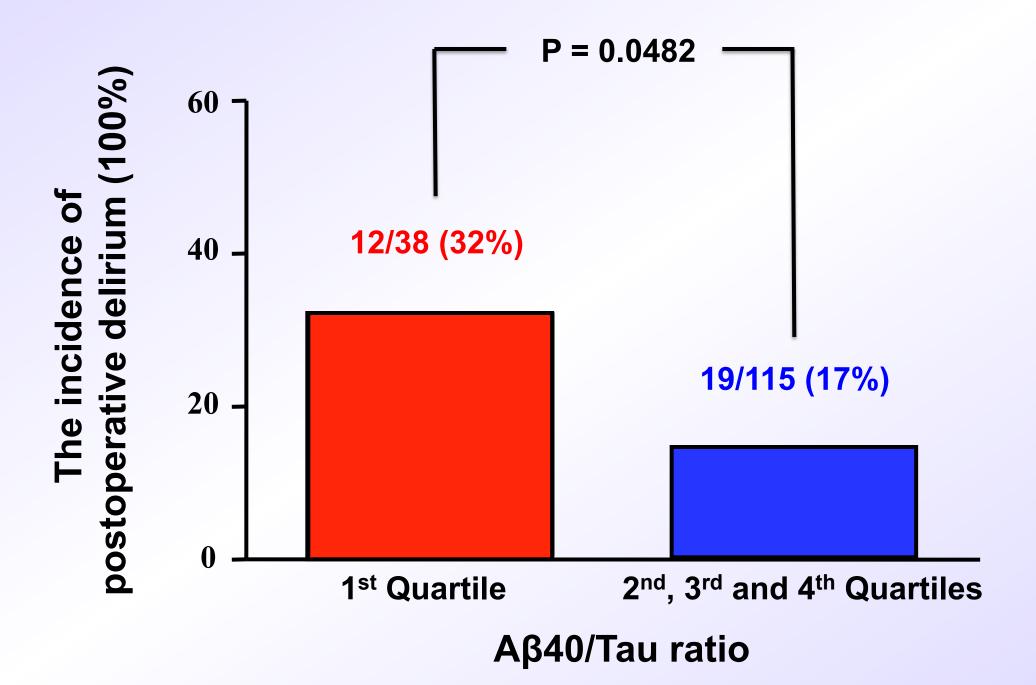
The association between postoperative delirium and the levels of CSF Aβ and Tau

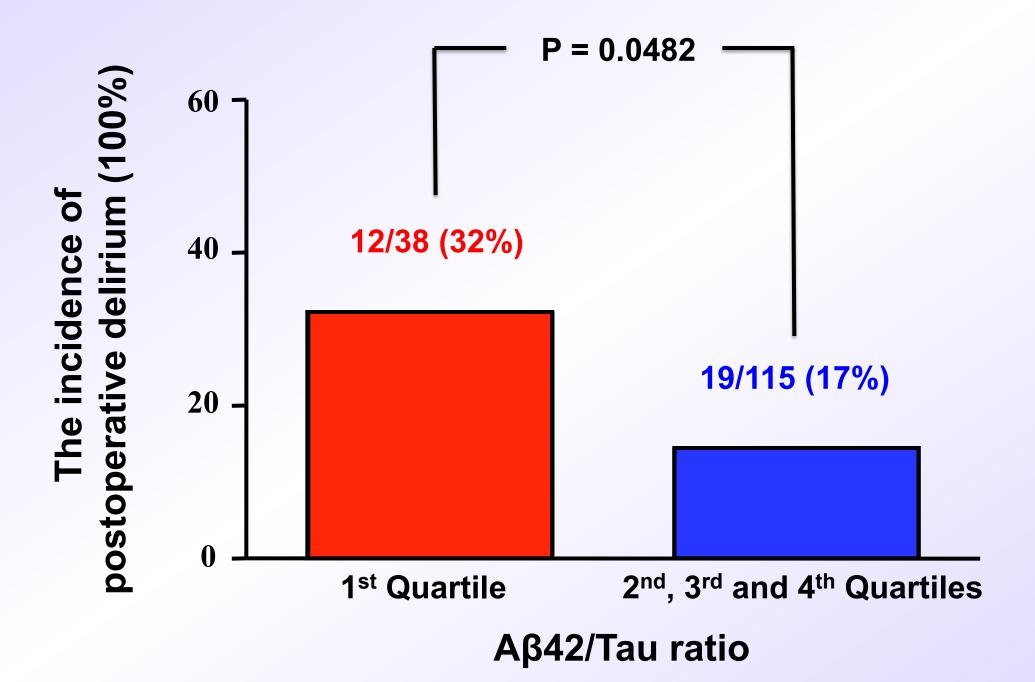
- > 76 participants aged 75 and older who had surgical repair of acute hip fracture.
- Postoperative delirium incidence: 39.5%.
- The postoperative delirium was <u>not</u> associated with baseline CSF Aβ42, Tau and phosphorylated Tau levels.
- The potential association of CSF Aβ/Tau ratio with postoperative delirium was not assessed

(Witlox et al., 2011)

Objective: To assess whether lower preoperative CSF AB/Tau ratio is associated with higher incidence and greater severity of postoperative delirium in patients.

Method:


- 153 participants (71 ± 5 years, 53% males) who had total hip/knee replacement under spinal anesthesia.
- Pre-operative CSF was obtained during the initiation of spinal anesthesia.
- Postoperative delirium incidence: Confusion Assessment Method (CAM) at day 1 and 2 after surgery.
- Postoperative delirium severity: Memorial Delirium Assessment Scale (MDAS) at day 1 and 2 after surgery.
- –ELISA was used to measure CSF Aβ40, Aβ42 and Tau levels.


> Methods:

- –63 years old or older, proficient in English, and candidate for spinal anesthesia.
- No AD, stroke, psychosis or other neurological and psychiatric disease, and no visual or hearing impairment.

Results:

- –20% (31 of 153 participants) had postoperative delirium.
- –MDAS score: 3 (2 5) (median and 25% 75% percentile).
- MDAS score in delirium participants: 7 (5 10).
- MDAS score in non-delirium participants: 3 (2 5).
- -CSF Aβ40/Tau ratio: 12.6 (9.2 16.1).
- -CSF Aβ42/Tau ratio: 1.4 (0.9 2.1).

Correlation between MDAS score and the CSF Aβ40/Tau or Aβ42/Tau ratio

Highest MDAS score

	Unadj	usted	Adjusted by age and gender			
	Regression coefficient <u>+</u> SE	Ρ	Regression coefficient <u>+</u> SE	Ρ		
Aβ40/Tau ratio	-0.12 <u>+</u> 0.05	0.014	-0.12 <u>+</u> 0.05	0.018		
Aβ42/Tau ratio	-0.65 <u>+</u> 0.26	0.013	-0.62 <u>+</u> 0.27	0.022		

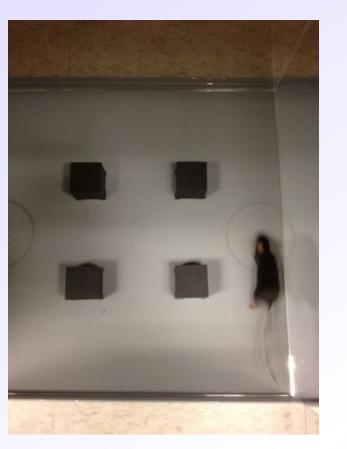
APOE4 and postoperative delirium

- APOE4 is associated with longer duration of delirium in ICU patients (*Ely et al., 2007*).
- APOE4 is not associated with delirium after bypass heart operations (*Tagarakis et al., 2007*).
- APOE4 increases the risk of early (day 1 and day 2) delirium after non-cardiac surgery (Leung et al., 2007).
- APOE4 is associated with postoperative delirium after repair of hip fracture (van Munster et al., 2009).
- APOE4 is not associated with postoperative delirium after vascular surgery (*Bryson et al., 2011*).
- APOE4 is associated with shorter duration of delirium in ICU patients (*Alexander et al., 2013*).

"Apolipoprotein E plays a complex role in illness response and recovery in critically ill patients. The relationship between apolipoprotein E genotype and brain dysfunction and survival is unclear."

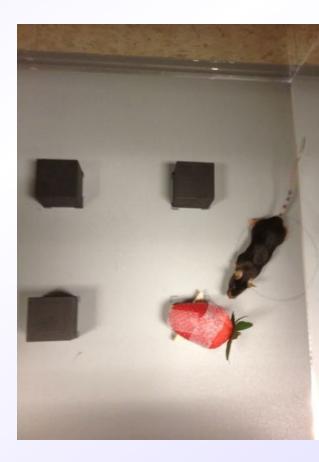
(Alexander et al., 2014, American Journal of Critical Care. 2014; 23:49-57).

Animal studies of delirium


- There are no satisfy animal models available to study delirium at the present time.
- We have set out to observe the animal nature behavior following the treatment of scopolamine and following the abdominal surgery under isoflurane anesthesia.
- The purpose is to ultimately develop a method of "CAM in mice".

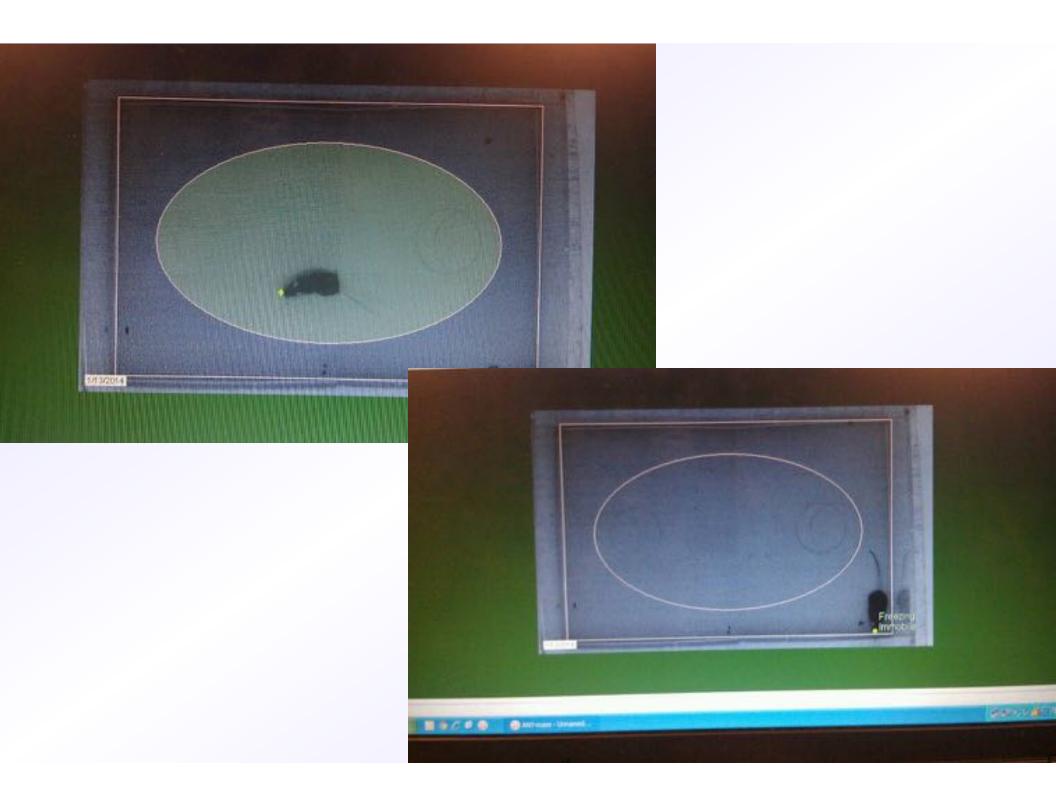
Animal studies of delirium

Attention level (*Millecamp et al., 2004*).


Freezing episodes.

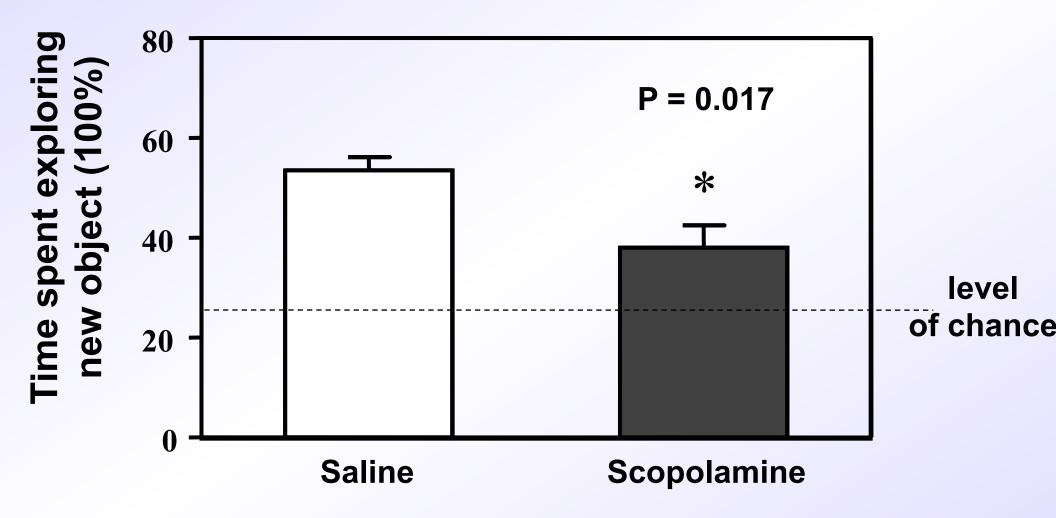
Timecourse investigation.

Attention level

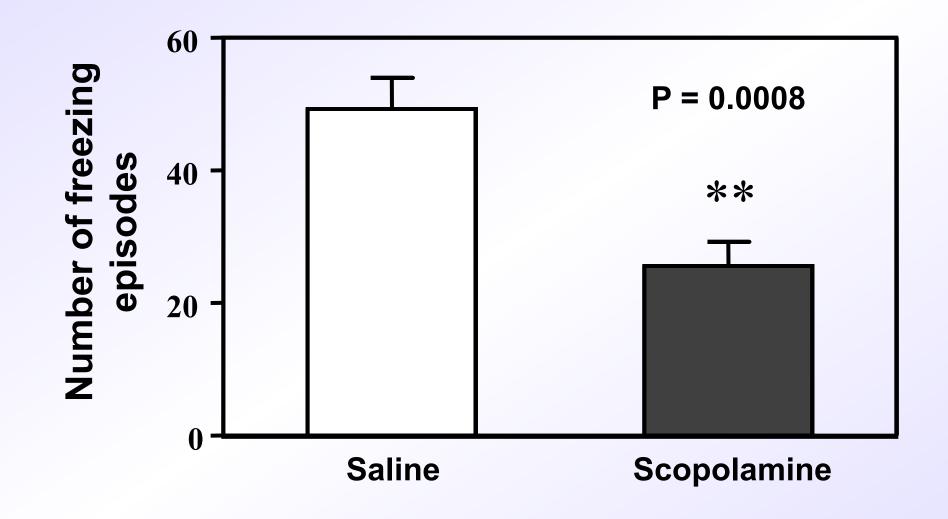

Attention level

 $\frac{\text{Duration of the new object exploration}}{\text{Total duration of all cumulated objects}} \times 100$ exploration (i.e. 3 familiar + the new one)

(Millecamps et al., 2004)


Freezing episodes

- Definition: No movement except respiration.
- Detected and analyzed by Any-Maze (Stoelting, Wood Dale, IL).



Scopolamine in mice

Α

B

Anesthesia and surgery in mice

Effects of Anesthesia and Surgery on mice "CAM"

	Scopolamine 2-8-month mice		Anesthesia & Surgery							
			2-8-month mice			18-month mice				
	30 min	12h	24h	48h	72h	12h	24h	48h	72h	
Mean speed	t	-	-	-	-	-	-	-	-	
Attention level	↓ ↓	-	ţ	-	-	↓ ↓	-	-	-	
Freezing episode	Ļ	-	-	-	-	-	¥	-	ţ	

↑ and ↓ indicate significant increase (P < 0.05) and decrease (P < 0.05) compared with saline or sham group at the same time point, respectively

Summary and Conclusion

- The patients who have lower preoperative CSF Aβ40/Tau or Aβ42/Tau ratio, particularly those in the lowest quartile, are more likely to develop postoperative delirium and have more severe symptoms.
- > These results suggest that Aβ and/or Tau may contribute to the neuropathogenesis of delirium.
- > These findings would promote more delirium studies, including studies in animals.

Acknowledgements

Geriatric Anesthesia Research Unit

Yuanlin Dong Celeste Swain Sarah A.P. Ward Yiying (Laura) Zhang Quan Ren **Collaborators**

Beth Israel Deaconess Medical Center

Edward Marcantonio

Massachusetts General Hospital Dennis Burke (Surgeon) Neelakantan Sunder (Anesthesiologist) Supports:

NIH R21AG038994

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital